Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 4 de 4
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Front Immunol ; 13: 1062067, 2022.
Статья в английский | MEDLINE | ID: covidwho-2232818

Реферат

Background: Breakthrough severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in coronavirus disease 2019 (COVID-19) vaccinees typically produces milder disease than infection in unvaccinated individuals. Methods: To explore disease attenuation, we examined COVID-19 symptom burden and immuno-virologic responses to symptomatic SARS-CoV-2 infection in participants (AZD1222: n=177/17,617; placebo: n=203/8,528) from a 2:1 randomized, placebo-controlled, phase 3 study of two-dose primary series AZD1222 (ChAdOx1 nCoV-19) vaccination (NCT04516746). Results: We observed that AZD1222 vaccinees had an overall lower incidence and shorter duration of COVID-19 symptoms compared with placebo recipients, as well as lower SARS-CoV-2 viral loads and a shorter median duration of viral shedding in saliva. Vaccinees demonstrated a robust antibody recall response versus placebo recipients with low-to-moderate inverse correlations with virologic endpoints. Vaccinees also demonstrated an enriched polyfunctional spike-specific Th-1-biased CD4+ and CD8+ T-cell response that was associated with strong inverse correlations with virologic endpoints. Conclusion: Robust immune responses following AZD1222 vaccination attenuate COVID-19 disease severity and restrict SARS-CoV-2 transmission potential by reducing viral loads and the duration of viral shedding in saliva. Collectively, these analyses underscore the essential role of vaccination in mitigating the COVID-19 pandemic.


Тема - темы
COVID-19 , ChAdOx1 nCoV-19 , Humans , CD8-Positive T-Lymphocytes , ChAdOx1 nCoV-19/immunology , COVID-19/immunology , COVID-19/prevention & control , Pandemics , SARS-CoV-2 , Immunity, Humoral , Immunity, Cellular
2.
Cell Rep Med ; 4(1): 100882, 2023 01 17.
Статья в английский | MEDLINE | ID: covidwho-2211651

Реферат

The nasal mucosa is an important initial site of host defense against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, intramuscularly administered vaccines typically do not achieve high antibody titers in the nasal mucosa. We measure anti-SARS-CoV-2 spike immunoglobulin G (IgG) and IgA in nasal epithelial lining fluid (NELF) following intramuscular vaccination of 3,058 participants from the immunogenicity substudy of a phase 3, double-blind, placebo-controlled study of AZD1222 vaccination (ClinicalTrials.gov: NCT04516746). IgG is detected in NELF collected 14 days following the first AZD1222 vaccination. IgG levels increase with a second vaccination and exceed pre-existing levels in baseline-SARS-CoV-2-seropositive participants. Nasal IgG responses are durable and display strong correlations with serum IgG, suggesting serum-to-NELF transudation. AZD1222 induces short-lived increases to pre-existing nasal IgA levels in baseline-seropositive vaccinees. Vaccinees display a robust recall IgG response upon breakthrough infection, with overall magnitudes unaffected by time between vaccination and illness. Mucosal responses correlate with reduced viral loads and shorter durations of viral shedding in saliva.


Тема - темы
COVID-19 , Humans , Antibody Formation , Breakthrough Infections , ChAdOx1 nCoV-19 , Immunoglobulin A , Immunoglobulin G , Nasal Mucosa , SARS-CoV-2 , Clinical Trials, Phase III as Topic , Double-Blind Method
3.
EBioMedicine ; 85: 104298, 2022 Nov.
Статья в английский | MEDLINE | ID: covidwho-2061074

Реферат

BACKGROUND: Intranasal vaccination may induce protective local and systemic immune responses against respiratory pathogens. A number of intranasal SARS-CoV-2 vaccine candidates have achieved protection in pre-clinical challenge models, including ChAdOx1 nCoV-19 (AZD1222, University of Oxford / AstraZeneca). METHODS: We performed a single-centre open-label Phase I clinical trial of intranasal vaccination with ChAdOx1 nCoV-19 in healthy adults, using the existing formulation produced for intramuscular administration. Thirty SARS-CoV-2 vaccine-naïve participants were allocated to receive 5 × 109 viral particles (VP, n=6), 2 × 1010 VP (n=12), or 5 × 1010 VP (n=12). Fourteen received second intranasal doses 28 days later. A further 12 received non-study intramuscular mRNA SARS-CoV-2 vaccination between study days 22 and 46. To investigate intranasal ChAdOx1 nCoV-19 as a booster, six participants who had previously received two intramuscular doses of ChAdOx1 nCoV-19 and six who had received two intramuscular doses of BNT162b2 (Pfizer / BioNTech) were given a single intranasal dose of 5 × 1010 VP of ChAdOx1 nCoV-19. Objectives were to assess safety (primary) and mucosal antibody responses (secondary). FINDINGS: Reactogenicity was mild or moderate. Antigen-specific mucosal antibody responses to intranasal vaccination were detectable in a minority of participants, rarely exceeding levels seen after SARS-CoV-2 infection. Systemic responses to intranasal vaccination were typically weaker than after intramuscular vaccination with ChAdOx1 nCoV-19. Antigen-specific mucosal antibody was detectable in participants who received an intramuscular mRNA vaccine after intranasal vaccination. Seven participants developed symptomatic SARS-CoV-2 infection. INTERPRETATION: This formulation of intranasal ChAdOx1 nCoV-19 showed an acceptable tolerability profile but induced neither a consistent mucosal antibody response nor a strong systemic response. FUNDING: AstraZeneca.


Тема - темы
COVID-19 , Viral Vaccines , Adult , Humans , Adenoviridae/genetics , Antibodies, Viral , BNT162 Vaccine , ChAdOx1 nCoV-19 , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , SARS-CoV-2 , Vaccination/adverse effects
4.
Clin Transl Immunology ; 11(4): e1385, 2022.
Статья в английский | MEDLINE | ID: covidwho-1802162

Реферат

Objectives: Robust, quantitative serology assays are required to accurately measure antibody levels following vaccination and natural infection. We present validation of a quantitative, multiplex, SARS-CoV-2, electrochemiluminescent (ECL) serology assay; show correlation with two established SARS-CoV-2 immunoassays; and present calibration results for two SARS-CoV-2 reference standards. Methods: Precision, dilutional linearity, ruggedness, analytical sensitivity and specificity were evaluated. Clinical sensitivity and specificity were assessed using serum from prepandemic and SARS-CoV-2 polymerase chain reaction (PCR)-positive patient samples. Assay concordance to the established Roche Elecsys® Anti-SARS-CoV-2 immunoassay and a live-virus microneutralisation (MN) assay was evaluated. Results: Standard curves demonstrated the assay can quantify SARS-CoV-2 antibody levels over a broad range. Assay precision (10.2-15.1% variability), dilutional linearity (≤ 1.16-fold bias per 10-fold increase in dilution), ruggedness (0.89-1.18 overall fold difference), relative accuracy (107-118%) and robust selectivity (102-104%) were demonstrated. Analytical sensitivity was 7, 13 and 7 arbitrary units mL-1 for SARS-CoV-2 spike (S), receptor-binding domain (RBD) and nucleocapsid (N) antigens, respectively. For all antigens, analytical specificity was > 90% and clinical specificity was 99.0%. Clinical sensitivities for S, RBD and N antigens were 100%, 98.8% and 84.9%, respectively. Comparison with the Elecsys® immunoassay showed ≥ 87.7% agreement and linear correlation (Pearson r of 0.85, P < 0.0001) relative to the MN assay. Conversion factors for the WHO International Standard and Meso Scale Discovery® Reference Standard are presented. Conclusions: The multiplex SARS-CoV-2 ECL serology assay is suitable for efficient, reproducible measurement of antibodies to SARS-CoV-2 antigens in human sera, supporting its use in clinical trials and sero-epidemiology studies.

Критерии поиска